The Ancient Nubians (A.D. 350) have historically been renowned for their significant contributions to medicine. In spite of this, extremely poor oral health plagued this population. Paleopathological studies depict pronounced dental deterioration patterns far exceeding normal physiological progression. The advanced wear is popularly attributed to sand particle contamination of their daily diets. However, considering that individual wear mechanisms rarely act in isolation, we propose that adverse biochemical factors arising from regular consumption of tetracycline-fortified beer induced calcium malabsorption, and thus provided a synergistic diathesis in potentiating these effects.

We examine these implications within the context of prevalent therapeutic remedies, bone fluorescence labeling data, and sociocultural attitudes when making the link between tetracycline and the compromised integrity of teeth, while citing the emergence of antibiotics actually predating formally-accepted convention.

Dental Paleopathology

Largely due to ancient Egypt’s arid climate and elaborate burial customs, paleopathologists and anthropologists alike have benefited from well-preserved mummified and skeletal remains to offer insight into health patterns prevalent among this civilization. Based on vast archaeological and ethnographic evidence, dental disease was particularly pronounced, most of which have been attributed to excessive tooth wear to the extent of pulpal exposure, and consequently apical infection. Upon further analysis, key dentition trends emerged, implicating dietary sources contaminated with inorganic particles, thereby forming the premise for the sand theory.

Theories and Methods

Tetracycline’s intrinsic ability to form drug-metal complexes not only drives their antibacterial action, but draws the linkage between calcium depletion and its consumption. Since the essential mineral is critical in maintaining the integrity of bones and teeth, its deficiency leaves these structures especially susceptible to alternative wear mechanisms.

Hypothesis

Given that tooth wear mechanisms generally act synergistically, it is proposed that tetracycline chelation compounded the loss of enamel and dentine degradation of teeth, thereby advancing the onset of common disease manifestations endemic to the ancient Egyptians.