Molecular Genetic Analysis of Rbm45/Drbp1: Genomic Structure, Expression, and Evolution
Lauren E. Pricea,f, Abigail B. Loewen Faulb,f, Aleksandra Vuchkovskaa, Kevin J. Lopeza, Katie M. Fastb, Andrew G. Ecka, David W. Hoferera,c, and Jeffrey O. Hendersona,b,c,d,g

RNA recognition motif-type RNA-binding domain containing proteins (RBDPs) participate in RNA metabolism including regulating mRNA stability, nuclear-cytoplasmic shuttling, and splicing. Rbm45 is an RBDP first cloned from rat brain and expressed spatiotemporally during rat neural development. More recently, RBM45 has been associated with pathological aggregates in the human neurological disorders amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and Alzheimer’s. Rbm45 and the neural developmental protein musashi-1 are in the same family of RDBPs and have similar expression patterns. In contrast to Musashi-1, which is upregulated during colorectal carcinogenesis, we found no association of RBM45 overexpression in human colon cancer tissue. In order to begin characterizing RNA-binding partners of Rbm45, we have successfully cloned and expressed human RBM45 in an Intein fusion-protein expression system. Furthermore, to gain a better understanding of the molecular genetics and evolution of Rbm45, we used an in silico approach to analyze the gene structure of the human and mouse Rbm45 homologues and explored the evolutionary conservation of Rbm45 in metazoans. Human RBM45 and mouse Rbm45 span ~17 kb and 13 kb, respectively, and contain 10 exons, one of which is non-coding. Both genes have TATA-less promoters with an initiator and a GC-rich element. Downstream of exon 10, both homologues have canonical polyadenylation signals and an embryonic cytoplasmic polyadenylation element. Moreover, our data indicate Rbm45 is conserved across all metazoan taxa from sponges (phylum Porifera) to humans (phylum Chordata), portending a fundamental role in metazoan development.

Keywords: Drbp, Rbm45, RNA-binding proteins, genomics, gene structure, molecular phylogeny

Introduction

RNA recognition motif-type RNA (RRM)-binding domain containing proteins (RBDPs) have diverse cellular functions. RBDPs have been demonstrated to regulate the stability of target mRNAs (e.g. CUGBP2 [Mukhopadhyay et al., 2003], HuR, [Abe et al., 1996], and Elav [Joseph et al., 1998]), the translatability of target mRNAs (e.g. musashi-1 [Imai et al., 2001; Sureban et al., 2008], Elav/Hu protein family [Antic et al., 1999; Chung et al., 1997; Okabe et al., 2001; Kasashima et al., 1999; Kawagishi et al., 2013]), and CUGBP2 [Anant et al., 2001; Mukhopadhyay, 2003; Sureban et al., 2007]), or both, in various tissues including neural and digestive (e.g. CUGBP2; Anant et al., 2004; Mukhopadhyay et al., 2003). Besides the canonical function of RNA binding, several RBDPs have been identified as being multifunctional proteins participating in RNA-mediated protein:protein interactions (AICF [Blanc et al., 2001a, 2005, 2007; Galloway et al., 2010; Henderson et al., 2001; Mehta and Driscoll, 2002], Syncrip (GRY-RBP) [Blanc et al., 2001b; Lau et al., 2002], and CUGBP2 [Anant et al., 2001; Mukhopadhyay et al., 2003]) or RNA-independent protein:protein interactions (e.g. neuronal proteins TDP-43 and FUS, reviewed in Ugras and Shorter, 2012). RNA-binding motif protein 45 (Rbm45), also known as developmentally regulated RNA-binding protein 1 (Drbp1), was first identified as a novel RNA-binding protein through the screening of a rat cerebral expression library with polyclonal antibody against consensus RRM sequences. Rbm45 has three (Li et al., 2015b; Mashiko et al., 2016) or four canonical RBDs (Tamada et al., 2002; HomoloGene, \url{https://www.ncbi.nlm.nih.gov/homologene?term=Rbm45} [accessed 11.15.2017]) and is expressed in a spatiotemporal manner in developing rat brain, with highest expression, as measured by mRNA accumulation, occurring between embryonic days 12 to 16. There is a subsequent decline in expression of Rbm45 during late embryonic development that extends into adulthood as neuronal precursor cells differentiate (Tamada et al., 2002). Additionally, Rbm45 has been demonstrated to be upregulated after spinal cord injury in an opossum neonatal model of neuronal repair (Mladinic et al., 2010). Subsequent work from Robert Bowser’s lab group (2012, 2015a, 2015b, 2016) and Hitoshi Endo’s lab (2016) strongly associate RBM45 aggregation in the pathogenesis of the destructive neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). Furthermore, mouse Rbm45 demonstrates strong association with aberrant prepulse inhibition, a measure of sensorimotor gating (startle reflex), an endophenotypic marker for neuropsychiatric disorders (Sittig et al., 2016). These studies implicate Rbm45 in neurogenesis, neuronal pathology, and neuronal repair. Despite the work of these groups, little is known about how Rbm45 accumulation contributes to the progression of neurodegenerative diseases, neural development, or neuronal maintenance.

RBDPs are typically multifunctional and act both in the nucleus and cytoplasm, influencing transcription, RNA splicing, RNA export, translation, and transport of mRNAs

a. Department of Science and Mathematics, Judson University, Elgin, IL, 60123, USA
b. Department of Biology, Tabor College, Hillsboro, KS 67063, USA
c. Department of Biology, Trinity International University, Bannockburn, IL, 60015, USA
d. Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO, 63110, USA
e. Present address: Department of Biology, Briar Cliff University, Sioux City, IA 51104, USA
f. Equal contribution
g. Corresponding author: jeffrey.henderson@judsonu.edu
(reviewed in Ling et al., 2013). Current research on ALS and FTLD-TDP (Li et al., 2015b; Mashiko et al., 2016) indicates RBM45 shares some of these functions (e.g. cytoplasmic-nuclear shuttling, homo-oligomerization, and heterodimerization with proteins involved in splicing), but also interacts with other RNA-binding proteins to modulate responses to oxidative stress and extracellular signaling (Li et al., 2016). In this report, we analyze the genomic structure, regulatory elements, gene expression, and evolutionary history of Rbm45 to gain an understanding of its role in metazoan development.

Experimental Procedures

Genomic Analysis

Rbm45 nucleotide and protein sequences were obtained from the National Center for Biotechnology Information (NCBI; https://www.ncbi.nlm.nih.gov/). Rbm45 orthologues were identified using the BLAST algorithm with *Mus musculus* (mouse; strain: Balb/C) Rbm45 cDNA, accession number (no.) AB036992.1 (Tamada et al., 2002) as the query sequence and retrieved from GenBank (https://www.ncbi.nlm.nih.gov/). The following accession nos. were utilized in this study: mouse (strain: C57BL/6J) Rbm45 genomic nucleotide (nt) sequence (NT039207.6), Homo sapiens (human) Rbm45 genomic nt sequence (NT005403), human Rbm45 cDNA (AB036991.1) and protein (NP_694453.2), mouse Rbm45 protein (AAH57890.1), Rattus norvegicus (Norway rat) Rbm45 cDNA (AB036990) and protein (NP_695218), Pan troglodytes (chimpanzee) Rbm45 cDNA (XM_515938.2) and protein (JAA066242), Macaca mulatta (Rhesus monkey) Rbm45 cDNA (XM_001097905.1) and protein (AF654478), Pongo abelii (Sumatran orangutan) Rbm45 cDNA (CR857898.1) and protein (NP_001125039), Monodelphis domestica (gray short-tailed opossum) Rbm45 cDNA (XM_001368729.1) and protein (XP_007494492), Canis lupus familiaris (dog) Rbm45 cDNA (XM_535977.2) and protein (XP_013966212), Gallus gallus (chicken) Rbm45 cDNA (NM001030252.1) and protein (NP_001026423.1), Xenopus laevis (African clawed frog) Rbm45 cDNA (BC045039.1) and protein (NP_001080090.1), and Danio rerio (zebra fish) Rbm45 cDNA (XM_691856.2) and protein (NP_001120874.1).

All sequence alignments were performed using ClustalW ([v1.83; http://www.ebi.ac.uk/clustalw/](http://www.ebi.ac.uk/clustalw/)) or ClustalOmega ([v1.2.1; https://www.ebi.ac.uk/Tools/msa/clustalo/](https://www.ebi.ac.uk/Tools/msa/clustalo/)). Molecular phylogenetic trees were created using PhyML3.1 (http://www.atgc-montpellier.fr/phylml/; Guindon et al., 2010) driven by SeaView-Multiplatform GUI for Molecular Phylogeny v4.6.2 (http://dou.prabi.fr/software/seaview/; Gouy et al., 2010). Molecular phylogenetic tree creation with Rbm45 nucleotide sequences used the following parameters: Model: GTR; Branch Support: aLRT (SH-like); Nucleotide Equilibrium Frequencies: Empirical; Invariable Sites: None; Across Site Rate Variation: Optimized; Tree Searching Operations: NNI; Starting Tree: BioNJ Optimize tree topology. Molecular phylogenetic tree creation with Rbm45 amino acid sequences used the following parameters: Model: LG; Branch Support: aLRT (SH-like); Amino Acid Equilibrium Frequencies: Model-given; Invariable Sites: None; Across Site Rate Variation: Optimized; Tree Searching Operations: NNI; Starting Tree: BioNJ Optimize tree topology.

Tissue Procurement

C57Bl/6J male mice were obtained from The Jackson Laboratory. Mice were maintained and sacrificed as approved by the Animal Studies Committees of Washington University School of Medicine and Tabor College. Tissues were harvested from 5 week old mice, washed in ice-cold phosphate buffered saline (PBS; 10 mM NaHPO4, 1.8 mM KH2PO4, 137 mM NaCl, 2.7 mM KCl, pH 7.4) and snap frozen using a dry ice/ethanol bath (−75°C). Human normal adjacent and cancerous colon tissue was kindly provided by Dr. Nicholas O. Davidson (Washington University School of Medicine) and obtained from The Siteman Cancer Center Tissue Procurement Core under a protocol approved by the Washington University-St. Louis Human Research Protection Office.

Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) Amplification Analysis of Human and Mouse Rbm45

RNA was extracted from normal adjacent and tumor tissue from human colon using TRI-reagent (Sigma-Aldrich) as described by the manufacturer. Total RNA for reverse transcription was prepared as described by Henderson and coworkers (2001), with the following modifications. Briefly, aliquots of total RNA (10 μg) were treated with 2 units RQ1 DNase (Promega) at 37°C for 1 h in 100 μL 40 mM Tris-HCl pH 7.6, 6 mM MgCl2, 10 mM NaCl, 40 U RNasin (Promega). The RNA was sequentially extracted with phenol:chloroform and chloroform, precipitated with ethanol at −80°C, washed once with 75% ethanol and resuspended in dihydrilpyrocarbonate-treated water. RNA concentration was confirmed by measuring the absorbance at 260 nm. Five hundred nanograms of RNA were used for reverse transcription in the presence of 200 ng random hexamer (dNs) and 200 units SuperScript II RNase H− Reverse Transcriptase (Life Technologies) as directed by the manufacturer. qRT-PCR analysis of human and mouse Rbm45, and 18s rRNA was performed using an ABI Prism 7700 Sequence Detection System (Applied Biosystems) using SYBR green PCR master mix according to the manufacturer’s instructions (Applied Biosystems). Thermal cycling conditions were as follows: 50°C for 2 min, 95°C for 10 min, then 40 cycles of 95°C for 15 sec and 60°C for 1 min. Primers were designed using Primer Express v2.0.0 software (Applied Biosystems) and amplify coding DNA separated by at least one intron. Primers were compared to the public nucleotide database (https://www.ncbi.nlm.nih.gov/) by BLAST analysis to confirm specificity. Primers for human RBM45 are QhRBM45F (sense; 5'-ctttcggtgatcagatcaca-3') and QhRBM45R (antisense; 5'-gtctcggtagtggcacaagaa-3'). Primers for mouse Rbm45 are QmRbm45F (sense; 5'-ttgttacctcctcgctgcaa-3') and QmRbm45R (antisense; 5'-ttaaaccaaaacaacccctttcct-3'). Primers for 18s RNA are 18sF (sense; 5'-cggatcactacgtaagaa-3') and 18sR (antisense; 5'-ctggatatcctgcggct-3'). The data were normalized to 18s RNA levels in each sample, then 2−ΔΔCT was calculated, as described by the manufacturer (User Bulletin #2 [10/2001], Applied Biosystems), to normalize mRNA abundance relative to normal tissue in the case of human colon cancer samples, or brain, in the analysis of adult mouse tissues. Statistical
Human RBM45 cDNA was cloned using FirstChoice® Human Brain Total RNA (Ambion) using oligo(dT)\(^20\) and SuperScript III RNase H− Reverse Transcriptase (Invitrogen), as described by the manufacturer, and subsequently amplified with AccuPrime \(P\)\(\beta\) DNA polymerase (Invitrogen) in a Dyad thermal cycler (MJ Research) using primers hRBM45I\(n\)F (sense; 5′-ggt gct cgg gag gac ggt gag tgt tgt ttt-3′; \(NdeI\) restriction site underlined, amino acid [AA] 2 double underlined) and hRBM45I\(n\)R (antisense; 5′-ggt gtt tgc tct tcc gca atg tct tgg ccc ttg-3′; \(SapI\) restriction site underlined, AA474 double underlined) under the following cycling conditions: Initial heat denaturation at 95℃ for 2 min, then 35 cycles of 95℃ for 15 sec, annealing gradient from 45℃ to 65℃ for 30 sec, and extension at 68℃ for 1 min 30 sec. A final extension of 10 min at 72℃ was used for the last cycle. The 1449 base pair amplicon was subcloned into pCR Blunt II-TOPO (Invitrogen), to give plasmid pCRII-hRBM45, and sequenced on both strands.

The human RBM45 cDNA was then cloned as an \(NdeI\)-\(SapI\) fragment from pCRII-hRBM45 into pTXB1 (New England Biolabs) creating a human RBM45 carboxy-terminal (C-terminus) Intein fusion protein. The Intein tag is self-cleavable and contains a chitin-binding domain for affinity purification as a fusion protein. Expression and purification of the fusion protein was conducted in ER2566 \(E.\ coli\) cells as previously described (Blanc et al., 2001b), with the exception that cells were induced with 0.4 mM isopropyl \(\beta\)-D-1-thiogalactopyranoside (IPTG), grown at 37℃, and lysed with B-PER Bacterial Protein Extraction Reagent (Pierce Biotechnology). Protein fractions were separated by 10-20% gradient SDS-PAGE and stained with Coomassie Brilliant Blue R-250 (BIO-RAD).

Mouse Rbm45 cDNA was cloned using a nested PCR approach. ssDNA was produced from mouse strain C57Bl/6j brain total RNA, purified with TRIZol Reagent (Invitrogen), using the gene specific primer mRbm45R (antisense; 5′-ccagctagcctgaggtttg-3′) and SuperScript III RNase H− Reverse Transcriptase (Invitrogen) as described by the manufacturer. The Rbm45 ssDNA was used as a template to amplify a full-length cDNA, flanked by non-coding DNA, using AccuPrime \(P\)\(\beta\) DNA polymerase (Invitrogen) and primers mRbm45F (sense; 5′-agaaacctgcccggggtaa-3′) and mRbm45R under the following cycling conditions: Initial heat denaturation at 95℃ for 2 min, then 30 cycles of 95℃ for 15 sec, annealing at 55℃ for 30 sec, and extension at 68℃ for 1 min 30 sec. A final extension of 10 min at 72℃ was used for the last cycle. The 1542 bp amplicon was subcloned into pSC-B using the StrataClone Ultra Blunt PCR Cloning Kit (Agilent) to create pJH1 and sequenced on both strands. The mouse Rbm45 coding sequence was then amplified from pJH1 using primers mRbm45I\(n\)F (sense; 5′-ggt ggt cat atg gag gac ggc ggc ggc tt-3′; \(NdeI\) restriction site underlined, AA2 double underlined) and mRbm45I\(n\)R (antisense; 5′-gga tga tgt tct cgc cct ttt-3′; AA476 double underlined) under the above cycling conditions. The 1455 bp amplicon was cleaved with S\(a\)pI and cloned into pTYB2 (New England Biolabs) digested with \(NdeI\) and \(S\)\(m\)aI creating a mouse Rbm45 C-terminal Intein fusion protein. Expression and purification of the fusion protein was conducted in ER2566 \(E.\ coli\) cells as previously described (Blanc et al., 2001b) with the following modifications: Cells were grown at 15℃, 25℃, or 30℃; each temperature point was uninduced or induced with 0.3 mM, 0.4 mM, or 0.5 mM IPTG. Cells were lysed with B-PER Bacterial Protein Extraction Reagent (Pierce Biotechnology) and total protein lysate analyzed by 10-20% gradient SDS-PAGE stained with Coomassie Brilliant Blue R-250 (BIO-RAD).

Results and Discussion

Human RBM45: Genomic Organization and Structure

Using BLASTn (https://blast.ncbi.nlm.nih.gov), we queried (Spring 2007) the non-redundant nucleotide collection (nrt) with human cDNA sequence revealing the exon/intron junctions on the human genomic sequence. We used this information to build a map of the RBM45 locus. The chromosomal locus containing the *Homo sapiens* (human) RBM45 gene spans approximately 17 kb and contains 10 exons (Fig. 1A), matching NCBI annotation data (26-Jan-2014, NM_152945). Database analysis (http://www.ncbi.nlm.nih.gov/UniGene/clust.cgi) localizes the gene (UniGene HS.377257; UGID:201961) to chromosome 2q31.2 (Assembly: GRCh38.p7 [GCF.000001405.33]; Location: NC_000002.12 [178112409...178129656 nt]) and having a plus orientation. The RBM45 gene is contained within chromosome 2 genomic scaffold GRCh38.p7 primary assembly HSCR2_CGT_7, accession no. NT_005403.18, and contains complementary exon sequence information to that obtained by our cloning and sequencing the human cDNA from brain (data not shown).

Further analysis of the NCBI database revealed an inferred processed-pseudogene (i.e. retropseudogene; NG_026133.1 derived from AC060788.11) on chromosome 8q24.22 (Assembly: GRCh38.p7 [GCF.000001405.33]; Location: NC_000002.12 [178112409...178129656 nt]) and having a plus orientation. The RBM45 gene is contained with chromosome 2 genomic scaffold GRCh38.p7 primary assembly HSCR2_CGT_7, accession no. NT_005403.18, and contains complementary exon sequence information to that obtained by our cloning and sequencing the human cDNA from brain (data not shown).

The fusion protein was conducted in ER2566 \(E.\ coli\) cells as previously described (Blanc et al., 2001b) with the following modifications: Cells were grown at 15℃, 25℃, or 30℃; each temperature point was uninduced or induced with 0.3 mM, 0.4 mM, or 0.5 mM IPTG. Cells were lysed with B-PER Bacterial Protein Extraction Reagent (Pierce Biotechnology) and total protein lysate analyzed by 10-20% gradient SDS-PAGE stained with Coomassie Brilliant Blue R-250 (BIO-RAD).
pyrimidine, e.g. thymine or cytosine, and N is any nucleotide) which would be predicted to encompass the transcription start site. INR sequences are highly degenerate (Weaver, 2012) and our putative INR matches 4 of 7 of the canonical nucleotides. Confirming this region as the transcription start site would require performing primer extension analysis (Henderson et al., 2001), for example, but is beyond the scope of this report. In addition to the INR, a CpG island, a proximal promoter element, was identified suggesting possible epigenetic regulation of RBM45 via cytosine methylation (Deaton and Bird, 2011). Both elements have been reported (Weaver, 2012) to be important for transcription initiation in the absence of a TATA box. Interestingly, a downstream promoter element (DPE) was not identified in the human RBM45 exon 1 5’-untranslated region (5’-UTR; Fig. 1B). DPEs are typically found +28 to +32 relative to the transcription start site and are a common feature in TATA-less promoters. In contrast, the related mouse Rbm45 contains a DPE in its 5’-UTR (Fig. 2B). However, presence of a DPE in TATA-less promoters is not sacrosanct as eukaryotic promoters are highly modular (Weaver, 2012).

Messenger RNA (mRNA) molecules often possess a poly(A) tail of approximately 250 adenosine residues. The poly(A) tail acts to increase the stability (Huez et al., 1974) and translatability (Munroe and Jacobson, 1990) of mRNA; additionally, the poly(A) tail plays a role in the transport of mature mRNA molecules from the nucleus to the cytoplasm (Eckner et al., 1991). Approximately 889 nt of genomic DNA (gDNA) downstream of RBM45 exon 10 were examined for putative polyadenylation signal elements, revealing the presence of an embryonic cytoplasmic polyadenylation signal (Fig. 1C; Fox et al., 1989) upstream of a canonical polyadenylation consensus signal (PACS; Fitzgerald and Shenk, 1981). Downstream of the PACS is a polyadenylation cleavage site (PCS) and a U-rich motif (Fig. 1C). Typically, the U-rich motif (T-rich in gDNA) is immediately preceded by a GU-rich motif (GT-rich in gDNA) but is not required for polyadenylation; albeit, polyadenylation is suboptimal in the absence of a GU-rich motif (Gil and Proudfoot, 1987; Weill et al., 2012).

All of the RBM45 intron-exon junctions were analyzed and conformed to the canonical consensus for splice donor and splice acceptor sites (Breathnach and Chambon, 1981) as enumerated in Table 1. Sequence analysis of cDNA clones from RT-PCR of adult human brain RNA (data not shown) did not reveal splice variants, consistent with previous analyses (Mammalian Gene Collection (MGC) Program Team, 2002). However, database interrogation (https://blast.ncbi.nlm.nih.gov/Blast.cgi) uncovered two predicted RBM45 variant, X1 (XP_016858809.1) and X2 (XP_005246344.1) derived by NCBI’s automated computational analysis using gene prediction method Gnomon (deposited 06.16.2016; https://www.ncbi.nlm.nih.gov/nuccore/1034611506/). Inspection of the cDNA sequence (XM_017003320.1) of the predicted RBM45 X1 isoform demonstrates it being derived through an alternative splice acceptor site adding 429 nt of immediately adjacent nt from the 5′-end of intron 1 (143 novel AA) to the 3′-end of exon 1 compared to wild-type RBM45. The resulting variant is predicted to encode a 617AA protein, compared to 474AA in the wild-type protein. Analysis of the cDNA sequence (XM_005246287.4) of the predicted RBM45 X2 isoform shows it is derived by use of a cryptic splice acceptor site on the 5′-end of exon 5, resulting in an in-frame 2 AA insertion predicted to encode a 476AA protein. Neither RBM45 isoform X1 or X2 is known to be physiologically relevant.
As with the human sequence, above, we queried (Spring 2007) the nr/nt collection, using BLASTn, with the mouse cDNA sequence revealing the exon/intron junctions on the mouse genomic sequence. Similar to human, the chromosomal locus containing the \textit{Mus musculus} (mouse) \textit{Rbm45} gene spans approximately 13 kb and contains 10 exons (Fig. 2A), matching NCBI annotation data (06-Oct-2010; AK080420.1, NM_153405.2). Data base analysis (www.ncbi.nlm.nih.gov/UniGene/clust.cgi) localizes the gene (UniGene Mm.33310; UGID:266774) to chromosome 2C3|2 (Assembly: GRCh38.p4; Location: NC_000068.7 [76369958...76383768 nt]). The \textit{Rbm45} gene is contained within GenBank BAC clone RP24-456G2 (Clone_lib: RPCI-24), accession no. AC122048.2, and contains complementary exon sequence information obtained by our cloning and sequencing the mouse cDNA from brain (data not shown). The four RBDs described in the cDNA cloned by Endo and coworkers (Tamada \textit{et al.}, 2002) are the products of exons 1, 2-3, 4-6, and 8-9, respectively (Fig. 2A). Like human \textit{RBM45}, analysis of mouse \textit{Rbm45} sequence 5' of exon 1 (approximately 198 nt) reveals that the promoter is TATA-less and contains a putative degenerate consensus (5 of 7 nt match) INR encompassing a predicted transcription start site (compare Fig. 2B to Fig. 1B). In contrast to human \textit{RBM45} (Fig. 1B), mouse \textit{Rbm45} contains a sequence with 4 of 7 nt matches to the consensus ([A/G]G[A/T][G/T]GT) DPE sequence at +28 to +32 relative to the predicted transcriptional start site, and has a GC-rich proximal promoter element in the form of a canonical GC-box (Fig. 2B). GC-
boxes have been demonstrated to enhance transcription of TATA-less promoters by binding the transcription factor Sp1 (Goodrich et al., 1996).

As in human RBM45, analysis of approximately 889 nt of gDNA downstream of mouse Rbm45 exon 10 for putative polyadenylation signal elements (Fig. 2C) revealed an embryonic cytoplasmic polyadenylation consensus signal upstream of a PACS. Downstream of the PACS is a PCS and, in contrast to human RBM45, both a canonical GU- and U-rich motif. The presence of both of these elements suggests that mouse Rbm45 may be more efficiently polyadenylated than human RBM45, thereby increasing expression of Rbm45 protein (Gil and Proudfoot, 1987). This assertion would need to be confirmed empirically, but is a reasonable hypothesis given the sequence data. In both the human and mouse Rbm45 genes, the presence of an embryonic cytoplasmic polyadenylation consensus signal correlates with the observation that highest expression of RBM45/Rbm45 occurs during (neural) development, at least in the rat and mouse (Tamada et al., 2002; McKee et al., 2005). Analysis of human fetal brain tissue by qRT-PCR (Henderson et al., 2001) would give some indication of the developmental regulation of human RBM45 mRNA levels; unfortunately, such a study is beyond the capabilities of our laboratory.

All of the mouse Rbm45 intron-exon junctions were analyzed and conformed to the canonical consensus splice donor and splice acceptor sites (Breathnach and Chambon, 1981) as enumerated in Table 2. Sequence analysis of cDNA clones from RT-PCR and database interrogation (https://blast.ncbi.nlm.nih.gov/Blast.cgi; data not shown) did not reveal splice variants, consistent with previous analyses (Tamada et al., 2002; McKee et al., 2005).

Figure 2. Structure of the mouse Rbm45 gene. The mouse Rbm45 gene has 10 exons. (A) (Top) The exons containing the four RNA-binding domains (RBD) are indicated by brackets. (Bottom) Schematic diagram of the exon-intron structure of the mouse Rbm45 gene. Vertical boxes represent the non-coding (filled boxes) and coding exons (open boxes), and are numbered sequentially. Solid horizontal lines represent introns. The diagram reflects the relative sizes of the exons and introns and is not drawn completely to scale. The introns and exons are scaled by type; the intron width scale is half that of the exon width scale. (B) The sequences in bold represent the predicted 5' UTR of exon 1 with 198 upstream nucleotides. The ATG start of translation is the last three nt. Putative promoter elements identified are a GC-box, thin underline; initiator element (INR), thick underline; and a downstream promoter element (DPE), double-underlined. (C) Exon 10 (bold type) with 889 downstream nucleotides. Predicted polyadenylation signaling elements identified are an embryonic cytoplasmic polyadenylation element (eCPE), red lettering; a canonical polyadenylation consensus signal (PACS), solid underlined; polyadenylation cleavage site (PCS), dotted underline; and a GU/U-rich motif, double-solid underlined.
Expression of human and mouse Rbm45 orthologues

Many RNA-binding proteins have been shown to be directly involved in tumorigenesis, including APOBEC-1 (Blanc et al., 2007), CUGBP2 (Mukhopadhyay et al., 2003), Hel-N1, HuR, and musashi-1 (Sureban et al., 2007, 2008). Moreover, CUGBP2, Hel-N1, HuR, and Musashi-1 are RDBPs similar in structure to Rbm45. Additionally, musashi-1 and Rbm45 are both expressed in differentiated neural cells and are involved in neural development (reviewed in Tamada et al., 2002). Intriguingly, musashi-1 has been shown to be upregulated in colon cancer and knockdown of its expression inhibits tumorigenesis (Sureban et al., 2008), properties expected of an oncogene (Hardin et al., 2012). Because of the similarities in both structure and expression of musashi-1 and Rbm45, coupled with the known property of cancer cells to have a dedifferentiated (embryonic-like) phenotype (Gilbert and Barresi, 2016), we hypothesized that expression of human RBM45 would be dysregulated during colonic tumorigenesis. Consequently, qRT-PCR on seven paired samples of human normal and cancerous colon tissue was performed. Unlike musashi-1, no change in RBM45 expression at the mRNA level was detected ($P = 0.867$, Fig. 3A); unfortunately, not enough tissue sample remained to determine protein levels.

Concomitant with analysis of the tumor samples, we also examined the expression of mouse Rbm45 in adult tissue including: brain, heart, spleen, lung, skeletal muscle, kidney, small intestinal enterocytes, colon, and liver. Our data (Fig. 3B) demonstrate that expression was highest in the brain with skeletal muscle and colon having 10-fold lower expression compared to brain; heart, spleen, lung, kidney, small intestinal enterocytes, and liver showed approximately three- to six-fold lower expression compared to brain. These data confirm and extend the work of Endo’s lab-group (2002) by directly quantifying steady-state tissue levels of mouse Rbm45 mRNA.

<table>
<thead>
<tr>
<th>Exon-intron boundaries of mouse Rbm45</th>
<th>Exon</th>
<th>Exon size (bp)</th>
<th>Splice donor sequence</th>
<th>Intron size (kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tggatatTTAGTT TCC ATT 6</td>
<td>1</td>
<td>300</td>
<td>GCC ATT AAC ggt cgg gtt gc</td>
<td>1.5</td>
</tr>
<tr>
<td>accccctTTAGTT TAT GGA 6</td>
<td>2</td>
<td>123</td>
<td>GTA AAT AAT gga att att att g</td>
<td>1.4</td>
</tr>
<tr>
<td>ttatatTTAGTT TCC AGA 6</td>
<td>3</td>
<td>117</td>
<td>TGG GAT AAG gga gtt gtt gc</td>
<td>0.7</td>
</tr>
<tr>
<td>aatatTTAGTT GTT GAA C3</td>
<td>4</td>
<td>113</td>
<td>TCA AAT TAC gta aag ggt</td>
<td>1.9</td>
</tr>
<tr>
<td>ttatatTTAGTT CAT GGT GC</td>
<td>5</td>
<td>316</td>
<td>AT ATG ACA gga aag ggg ac</td>
<td>0.1</td>
</tr>
<tr>
<td>ttatatTTAGTT TAT GGA 5</td>
<td>6</td>
<td>310</td>
<td>AT ATG ACA gta aag gtc</td>
<td>1.3</td>
</tr>
<tr>
<td>ttatatTTAGTT GCT TTT GGG</td>
<td>7</td>
<td>218</td>
<td>TA GTCTAA gga agt gtt gc</td>
<td>0.9</td>
</tr>
<tr>
<td>ttatatTTAGTT AAC AAGACT</td>
<td>8</td>
<td>201</td>
<td>ACC GTCTG CAC gaa ccttccc</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Intron and exon sequences are shown in lowercase and uppercase letters, respectively. Coding exons are depicted in codon triplets. The invariant last and first nucleotides of the intron are shown in boldface type.
Recombinant expression and purification of human and mouse Rbm45

To begin the process of identifying potential RNA-binding partners, we cloned the human RBM45 and mouse Rbm45 cDNAs, respectively, to create Intein fusion proteins. The Intein moiety can be cleaved from the fusion protein during on-column purification to release the Rbm45 protein. Both human RBM45 and mouse Rbm45 were cloned so that the Intein protein is fused to the C-terminus.

Human RBM45 was efficiently expressed as a RBM45/Intein protein. Analysis of expressed RBM45/Intein protein by SDS-PAGE revealed a molecular mass of ~80 kDa (53 kDa from RBM45 + 28 kDa from Intein), as expected. The recombinant protein was purified over a chitin column, subjected to on-column cleavage, and the eluent analyzed by SDS-PAGE revealing an ~53 kDa protein at ~95% purity (data not shown). The molecular mass of human RBM45 confirms that of Tamada and colleagues (2002). Having the ability to express large amounts of human RBM45 will allow us to identify putative RNA-(GAGGAC motif; Ray et al., 2013) and protein-binding partners in mouse brain extracts.

Expression of recombinant mouse Rbm45/Intein fusion protein was poor. Expression optimization was carried out at 15°C, 25°C, or 30°C using a concentration gradient of 0.3, 0.4, or 0.5 mM of the inducer, IPTG. Only cells induced with 0.5 mM IPTG and incubated at 15°C produced detectable protein by SDS-PAGE analysis (data not shown). The fusion protein had the expected molecular mass of ~80 kDa; however, expression was estimated to be 100-fold less than the control recombinant Intein-fusion protein, maltose binding protein. Furthermore, analysis of insoluble proteins in the pellet revealed no detectable Rbm45/Intein protein. Although expression of recombinant Rbm45 was low, we did not detect negative effects on bacterial replication in the presence of induced recombinant protein. Taken together, these data (not shown) indicate that mouse Rbm45 is not efficiently expressed from this vector. It is possible that mouse Rbm45 with Intein fused to the amino-terminus (i.e. N-terminus) could be expressed robustly in this system, but it is unclear why the highly related mouse and human Rbm45 proteins were not expressed similarly.

Molecular Phylogenetics of Rbm45 Orthologues

In order to investigate the homology of Rbm45 across the tree of life, we searched the NCBI database for known and predicted orthologues. Our most recent search of the NCBI database (10/18/2017) for predicted Rbm45 orthologues revealed 214 gene loci. Similarly, a search of HomoloGene (https://www.ncbi.nlm.nih.gov/homologene/?term=RBM45; https://www.ncbi.nlm.nih.gov/gene/?Term=ortholog_gene_12983[group]), on the same date, showed orthologues across all metazoan taxa: animals that develop from only a blastula (one germ layer, no gastrulation), phylum Porifera (sponges); diploblasts (two germ layers), phylum Cnidaria (hydra); lophotrochozoan protostomia, phyla Mollusca (cephalopods: e.g. octopus), and Annelida (segmented worms); ecdysozoan protostomia, phylum Arthropoda (insects); and the deuterostomia phyla Echinodermata (sea urchin) and Chordata (Subphylum vertebrata: e.g. humans) (Hickman et al., 2011; see Brusca [2016] for an alternative view of the phylogeny). Our analysis of Rbm45 orthologues was confined to ten vertebrate species within classes Actinopterygii (ray-finned fishes), Amphibia, Reptilia (Aves), and Mammalia, including the important molecular genetic and developmental model systems Danio rerio (zebrafish), Xenopus laevis (African clawed frog), Gallus gallus (chicken), and Mus musculus (mouse). Unrooted phylogram analysis using
Rbm45 cDNAs (Fig. 4A) demonstrate, as expected, the great apes (family Hominidae; human, chimpanzee, and orangutan) showing the closest evolutionary relatedness, with placentals as a monophyletic group, then a marsupial (opossum), followed by a reptile (chicken), amphibian (African clawed frog), and a fish (zebrafish). Pairwise alignment of Rbm45 nt sequences from human vs. chimpanzee and human vs. mouse revealed 97.8% and 90% identity, respectively (data not shown). Furthermore, multiple sequence alignment of Rbm45 orthologues from 10 different species within classes Mammalia, Reptilia (Aves), Amphibia, and Actinopterygii demonstrated 42.1% identity at the nt level (Fig. 4B, Supplementary Fig. 1), exceeding the threshold of identity due to weak selective pressure on degenerate codons (Koonin and Galperin, 2003).

A similar examination using amino acid sequences from the same Rbm45 orthologues (Fig. 5) exhibit an almost identical phylogram (Fig. 5A) to that produced using nucleotide sequences (Fig. 4A), with the only difference being that mouse is not grouped with the other placentals (paraphyletic). However, other phylograms generated (not shown), illustrated the “correct” taxonomical relationships; we chose to use an unbiased methodology (see Experimental Procedures). Multiple sequence alignment of Rbm45 protein from 10 vertebrates demonstrates 65% conservation at the protein level (Fig. 5B, Supplementary Fig. 2). Since mouse is an important genetic model for understanding gene function in mammals, pairwise alignment of amino acid sequences from mouse and human was carried out revealing 93.5% conservation. In like manner, rat is often used as a physiological model for human metabolic pathways; pairwise alignment of mouse and rat Rbm45 showed 100% identity at the amino acid level (data not shown). Additionally, Tamada and coworkers (2002) reported 91.6% identity between rat and human Rbm45 protein. Unsurprisingly, orangutan, chimpanzee, and human, sharing a common ancestor (Darwin, 1874; Finstermeier et al., 2013), form the least inclusive monophyletic grouping in the phylogram produced using Rbm45 amino acid sequence (Fig. 5A), with chimpanzee and human (subfamily Homininae, tribe Hominini [Gray, 1825; Hall and Hallgrimsson, 2014]) being the least inclusive monophyletic grouping in the phylogram generated using Rbm45 nt sequence (Fig. 4A).
Figure 5. Molecular phylogenetics of Rbm45 protein sequences. Rbm45 AA sequence is highly conserved in vertebrates. (A) Phylogram created with the PhyML program using Rbm45 protein sequences from ten vertebrate species. The bar represents 0.05 AA substitutions per site. (B) Representative region of ClustalOmega multiple alignment of Rbm45 protein from ten vertebrate species. Asterisks (*) indicate identity, colons (:) indicate conserved AA change, and a single dot (.) indicates identity or conserved AA change in nine of the ten sequences. Species are listed with placentals first, then a marsupial, then egg-laying animals.

The phylograms in Figures 4A and 5A closely mimic the current understanding of tetrapod evolution (Amemiya et al., 2013), supporting the molecular taxonomic relationship we observed. Considering our molecular phylogeny data and that sponges don’t have a nervous system, but retain a neural toolkit of genes (Leys, 2015), including an Rbm45 orthologue, it is tempting to speculate that these data suggest Rbm45 exhibits deep homology (Zimmer and Emlen, 2016), a fundamental, evolutionarily-conserved, function in (neuronal) development of metazoans.

Acknowledgments
We thank Dr. Nicholas O. Davidson, Washington University School of Medicine, for tissue samples, reagents, hardware, and lab space for the qRT-PCR analysis on paired normal and cancerous human colon and mouse organ samples, Dr. Amy Greene for helpful comments on the manuscript, and Julie K. Henderson for editorial assistance. JOH thanks Dr. Shrikant Anant for recommending, in 2002, the newly discovered Rbm45/Drbp1gene as a platform for undergraduate student research. This work was carried out from 2002 to 2017 and supported by a Ruth L. Kirschstein National Research Service Award T32 DK-07130 (2002-2003; JOH), Hope Scholars’ Grant from Tabor College (2008; JOH), science department funds from Trinity International University (2005-2006; JOH), Tabor College (2006-2008; ABLF, KMF, and JOH), Judson University (2012-2017; LEP, AV, KJL, AGE, DWH, and JOH), and a one-semester sabbatical leave from Judson University (2017; JOH).

References
interacting with apobec-1 and ACF, the apobec-1 complementation factor. J. Biol. Chem. 276(50), 47338-51.

Gray, J.E. (1825). An outline of an attempt at the disposition of the Mammalia into tribes and families, with a list of the genera apparently appertaining to each tribe. Ann. Philos. ns(10), 337-44.

