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Introduction

• Corrosion is the biggest problem in the concrete structures and billions of dollars are 
used for the maintenance cost.  

• It has become very important to develop High Performance Concrete (HPC) due to 
weathering problems in nation’s concrete infrastructure  namely bridges and 
pavements. 

• HPC generally increases the durability against the chloride induced corrosion along 
with long term compressive and tensile strength.

• Therefore, a natural pozzolanic cementitious material known as natural zeolite is 
being used for enhancing the performance of HPC.

• Natural zeolite, a crystalline hydrated alumino-silicate processed (volcanic ash) 
mineral and its highly effective pozzolan due to natural occurrence of aluminum 
silicate.
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Objectives
• Identifying proper binary and ternary based 

HPC  mixtures design with variation of 
feasible water to cementitious material ratio 
and  different aggregate sizes. 

• Surface electrical resistivity (SR) and modulus 
of elasticity testing is performed under the 
durability investigation against the chloride 
induced corrosion in concrete structures.

• Modulus of elasticity is related to stiffness and 
strength of concrete and it widely used in 
design of reinforcement concrete structures

• This SR data provides indirect indication to 
corrosion rate in reinforced concrete structures.
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Materials

• Zeolite: major cementitious material being investigated

• Type II-V Cement (TII-V), since Type I Cement is prohibited 

in California due to sulfate attack problem

• Other Supplementary Cementitious Materials (SCMs): 
 Ground granulated blast furnace slag of grade 120 (G120S)

 Class C Fly Ash (C)

 Class F Fly Ash (F)

 Silica Fume (SF)

 Metakaolin (M)

 Pumice (P)

• Chemical Admixtures
 Glenium 3030 water reducer (ASTM C494 Specification)

 MBVR Air Entrainer (ASTM C494 Specification)

Resources: 

http://www.kmizeolite.com/contact.html 
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Concrete Mixtures

Fly Ash (Class C) 

Metakaolin Silica Fume Fly Ash (Class F)

Slag

+
Ordinary Portland Cement 

(OPC)

Zeolite (10%, 15%, 

20%, 25%, 30% 

replacement by mass)

=
Binary based 

concrete 

mixtures
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Concrete Mixtures

Ordinary Portland 

Cement 

(OPC)

Zeolite

(15% and 20% 

replacement by 

mass)

Supplementary 

Cementitious materials 

(SCM)

=
Ternary based 

concrete 

mixtures

• Water to cementitious material ratios (W/C) were kept at either 0.44 or 0.4

• Coarse aggregates of 1/2" or 3/4" were used in the mixtures

• Zeolite was replaced with cement with varying percentage level of 10, 15, 

20, 25, and 30 % by mass.  
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Concrete Mixing 
and Curing 
Method 

Curing of 

Concrete Samples 

(Right)

Mixing of 

Concrete 

(Left) 
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Experimental Method

• Cylinders of 4" diameter and 8" length were poured 
with concrete  according to ASTM C192 
specification. 

• The cylinders were used for testing modulus of 
elasticity at 28 days and surface electrical resistivity 
at 7, 28, 56 and 91days.

• Concrete cylinders are cured in saturated lime water 
tank. 

• 4- point Wenner Probe device is used as Non 
Destructive Testing  for surface electrical resistivity. 

• For modulus of elasticity compressometer is used 
as Destructive Testing. 
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Surface Electrical Resistivity 

• 3 Concrete cylinders are tested using 4- point Wenner Probe testing at 
7, 28, 56 and 91 days.

Resource : Florida Method of Test For Concrete Resistivity as an Electrical 

Indicator of its Permeability Designation: FM 5-578

Chloride Ion

Permeability

Surface 

Resistivity Test

kΩ−cm

High < 12

Moderate 12 – 21

Low 21 – 37

Very Low 37 – 254

Negligible > 254

Surface Resistivity - Permeability

From FDOT 
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Surface Electrical Resistivity 

Figure 1: Comparison of surface electrical 

resistivity of Ordinary Portland Cement (OPC) 

to 0.44 with 0.40 w/c for ½” aggregate size 
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Surface Electrical Resistivity 

Figure 2: Comparison of surface electrical 

resistivity of Ordinary Portland Cement (OPC) 

to 0.44 with 0.40 w/c for ¾ ” aggregate size 
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Surface Electrical Resistivity 

Figure 3: Comparison of surface electrical 

resistivity of binary to ternary mixture 
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Surface Electrical Resistivity 

Figure 4: Comparison of surface electrical 

resistivity of binary to ternary mixture 
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Surface Electrical Resistivity 

Figure 5: Comparison of surface electrical 

resistivity of binary to ternary mixture 

Mix Designs: 
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Modulus of Elasticity

• Modulus of Elasticity is tested at 28 days and average for 2 cylinders is 
taken into account.

• Measuring Modulus of Elasticity (E) is obtained:

• Theoretically : using this equation, 𝐸 = 57,000 𝑓𝑐
`

• Graphically : based on slope of strain and stress curve 

within an elastic deformation region

• Experimentally : using compressometer equipment
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Modulus of Elasticity
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Figure 6: Comparison of experimental to theoretical 

modulus of elasticity for binary mixtures 

NOTE: Data for control mix for 0.44 w/c 

and ½” is still in progress
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Modulus of Elasticity

Figure 7: Comparison of experimental to theoretical 

modulus of elasticity for ternary mixtures 
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Modulus of Elasticity

Figure 8: Comparison of experimental to theoretical 

modulus of elasticity for binary mixtures 
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Conclusions

• Zeolite based concrete mixtures with water to total cementitious 
material ratio (W/C) at 0.4 and ¾ ’’ aggregates provide promising 
results in terms of development of high surface electrical resistivity 
and modules of elasticity .

• Results for modulus of elasticity for theoretical and experimental are  
within 10 to 20 % of error of margin and this is acceptable.

• Based on the analysis, it can be concluded that zeolite is very sensitive 
to W/C ratios and size of the aggregates.

• In summary, zeolite based concrete mixtures achieved  low corrosion 
rate and will increase the service life due to chloride induced 
corrosion. 
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